ZASOBY PSZCZOŁY RODZIMEJ I ICH OCHRONA

Michał Gromisz

Oddział Pszczelnictwa ISK,
ul. Kazimierska 2, 24-100 Puławy

WPRAWODZENIE

SYSTEMATYKA PSZCZOŁY MIODNEJ I ZASIĘGI GEOGRAFICZNE

Pozostałymi wyjatkami w Europie zadomowiły się dwa wielkie podgatunki pszczóły miodnej Apis mellifera: pszczoła miodna właściwa Apis mellifera mellifera i pszczoła kraińska Apis mellifera carnica. Praktycznie cały obszar Polski leżał w zasięgu Apis mellifera mellifera, jedynie na południu w rejonie Karpat wkraczała na nasz teren Apis mellifera carnica.

Na obszarze występowania podgatunku Apis mellifera mellifera systematy odwrębnili następujące rasy lokalne: iberyjską, środkowoeuropejską, wrzosową i leśną. W Polsce występuje przede wszystkim pszczoła środkowo-europejska, jedynie w północnowschodniej części kraju dopatrujemy się niewielkiego udziału pszczóły leśnej.

Z ras lokalnych zaliczanych do podgatunku Apis mellifera carnica najbliższe naszych granic państwowych są pszczóły karpackie i pszczóły ukraińskie, określane także jako stepowe.
Ten pierwotny obraz rozmieszczenia terytorialnegor ras pszczół od ponad 100 lat był konsekwentnie rujnowany przez import pszczół w celach gospodarczych. Najpierw cieszyła się uznaniem pszczoła włoska *Apis mellifera ligustica* z Półwyspu Apenińskiego, później wyparły ją górskie odmiany pszczoly kraińskiej. Niszczono w ten sposób skutecznie pierwotną strukturę genetyczną populacji pszczoly środowiskoweuropejskiej. Na zachód od Odrz niewielkie enklawy tej rasy pszczół przetrwały do lat 50. tylko na terenie Francji.

MODEL MATEMATYCZNY PSZCZOŁY ŚRODKOWOEUROPEJSKIEJ

Na obszarze Polski zmieszańcowanie rodzimej pszczoly środowiskoweuropejskiej postępowało w powolniejszym tempie i z opóźnieniem w stosunku do Europy zachodniej. Jeszcze w latach 50. pierwotny zasięg ras pszczól zaznaczał się wyraźnie na mapie kraju, ale postęp w mieszańcowaniu był już widoczny, co stwierdziliśmy w masowych badaniach morfologicznych. W wielu jednak regionach kraju i okolicach natrafiano na populacje pszczół wysoce wyróżnane pod względem morfologicznym, nie dotknięte wpływem obcych ras. Szczególnie korzystnie wyróżniał się pod tym względem obszar rozciągający się od Wyżyny Lubelskiej przez Podlasie po Mazury. Te populację potraktowaliśmy jako zbiór rojów reprezentatywnych dla rodzimej pszczoly środowiskoweuropejskiej. Na badaniach tej próby rojów oparto definicję morfologiczną rasy. Wykorzystano tutaj właściwości rozkładu normalnego, do którego zbliżała się zmienność cech w populacji. Sprowadzając średnią arytmetyczną (*x*) do zera, a standardowe odchylenie (*S*) do jednostki, zbudowano model matematyczno-morfologiczny rasy. Tę normalizację cech wyraża wzór

\[z = (X-x):S \]

w którym *x* oznacza wartość rzeczywistą cechy dowolnego roju, a *z* jej wartość znormalizowaną. W zborze rojów, które obejmuje model, ich wartości znormalizowane cechy zamykają się w przedziale od -3 do +3. Jest to warunkiem zaliczenia roju do modelowej populacji (możliwość pomyłki 0,013).

Ostateczna postać modelu rasy środowiskoweuropejskiej w stosunku do trzech podstawowych cech jest następująca:

- szerokość IV tergitu \(z = 24,2718x-57,1845 \)
- długość językczka \(z = 10,2041x-62,3980 \)
- indeks kubitalny \(z = 0,311x-19,082 \)
POSTĘP I SKUTKI MIESZANCIOWANIA POPULACJI

Z 389 rojów pszczelich badanych na terenie kraju w latach 50. tylko 35% spełniało kryteria rasy środkowoeuropejskiej. Pozostałe były morfologicznie zbliżone bądź do pszczoły kraińskiej (8%), bądź dopatrzono się w nich zmieszanaowania. Rozwój wydarzeń w następnych latach wysoce pogłębił tę mozaikę. Produkcja pasieczna została bowiem oparta na międzyrasowym krzyżowaniu pszczół. Importowano matki rasy kaukaskiej i kraińskiej. Specyfika unasiania naturalnego matek pszczelich, nie krepsowanego z zasady doborem odpowiednich trutni, pozbawiała praktycznie przeciwnego pszczerzarza możliwości utrzymywania pszczoł czystej, jakiejkolwiek rasy. Jak zaowocowały nasze starania w tym kierunku, podpowiada rycina 1, na której są przedstawione wyniki reprodukcji linii Asta w warunkach penetracji trutni rasy kaukaskiej. Wiele tu można było zaradzić przez sztuczne unasianianie matek, ale nie w skali powszechnej. Cierpiała również z tego powodu produkcja wartościowych mieszkańców heterozyjnych, także z niedostatku odpowiednich form rodzicielskich do krzyżowania, przede wszystkim ze strony ojcowej. W naszych masowych badaniach krzyżowanie matek kaukaskich i kraińskich z pszczołą miejscową dawało tylko w 30% przypadków efekt heterozji, a 20% rojów-mieszaniwków ustępowo produkcją miodową nawet pszczołem nieselennonowanym. W tej sytuacji topniali także w tempie przyspieszonym rezerwy genetyczne pszczoły środkowoeuropejskiej, która w pierwotnych założeniach miała stanowić równorzędny komponent do krzyżowania. Taki stan rzeczy zaważył na organizacji licencjonowanej hodowli pszczół.

HODOWLA ZACHOWAWCZA

Z wprowadzeniem masowego chowu pszczół obcych ras do naszych pasiek i ich reprodukcji, trzeba było przestawić hodowlę elitarną z systemu otwartego na system zamknięty. System otwarty opiera się na jednej rasie pszczół, powiązaniu zwrotnym między hodowlą elitarną a pasiekkami użytkowymi oraz możliwości masowego udziału pasieek w programie doskonalenia genetycznego pszczół, przy wykorzystywaniu różnicowych kombinacji hodowlanych w obrębie rasy. System zamknięty akceptuje natomiast wątek wielorasowy w hodowli i izolację genetyczną pasieek zarodowych od pszczół populacji krajowej, której znaczenie jako źródła materiału pszczelego do selekcji się zatraca. Gdy chodzi o pszczółkę środkowoeuropejską jedynym jej nośnikiem genetycznym stały się selekcjonowane linie hodowlane, niezbyt bogate w roje i z biegiem czasu wymierające. Z wielu znanych linii tej rasy pszczół, obecnie funkcjonują dwie: Asta i Mazurka.
Selekcjonowanie pszczół środkowoeuropejskiej stało się niepopularne, a przede wszystkim trudne technicznie i nieopłacalne. Z obawy całkowitej zтратy tej rasy, chwycono się koncepcji hodowli zachowawczej, jako wyodrębnionej części programu genetycznego doskonalenia pszczół. Pierwszym działaniem w tym kierunku było utworzenie zamkniętego rejonu hodowli pszczoli Augustowskiej, a następnie także pszczoli kampinoskiej. Oba te rejony otrzymały status prawny regionalnego szczelba i w obu została objęta ochroną genetyczną pszczoła miejscowa, w Puszczy Augustowskiej bliska pokrojem rasie leśnej, a w Puszczy Kampinoskiej - rasie środkowoeuropejskiej.
ZASady Funkcjonowania ZAMKniętych Rejonów

Zamknięty rejon jako forma hodowli zachowawczej obejmuje siedlisko określonej populacji pszczoł, która się reprodukuje w obrębie własnej puli genów. Zabezpieczenie przed migracją obcych genów pełni izolacja przestrzenna. Zatem zasięg lotów godowych matek populacji chronionej i lotów godowych trutni spoza tej populacji nie mogą zachodzić na siebie.

W naszych warunkach równinnego ukształtowania rzeźby terenu przyjmuje się, że promień lotów trutni sięga 6 km, a lotów matek 3 km. Poza tym skupiska trutni wyczekujących na przylot matek są rozmieszczone względnie równomiernie, inaczej niż ma to miejsce w terenie górzystym. Wiemy także, że większość trutni z pni ojcowskich pokonuje dystans bliski połowie odcinka możliwego zasięgu ich lotu, podobnie zresztą jak i matek. Odległość lotów godowych można zatem traktować jak cechę ilościową, a ich rozkład w szeregu statystycznym przyjąć za rozkład zwany normalnym (Ryc.2). Oznacza to, że w miarę oddalania się od miejsca postoju pni ojcowskich i pni matecznych zmienia się zagęszczenie trutni i matek w stosunku do jednostki powierzchni. Procentowy udział z ogólnej puli trutni i matek przypadający na 1 km² jest następujący:

<table>
<thead>
<tr>
<th></th>
<th>trutnie</th>
<th>matki</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1 km</td>
<td>0,75%</td>
<td>5,10%</td>
</tr>
<tr>
<td>1-2 km</td>
<td>1,43%</td>
<td>7,22%</td>
</tr>
<tr>
<td>2-3 km</td>
<td>2,17%</td>
<td>1,02%</td>
</tr>
<tr>
<td>3-4 km</td>
<td>1,55%</td>
<td>-</td>
</tr>
<tr>
<td>4-5 km</td>
<td>0,48%</td>
<td>-</td>
</tr>
<tr>
<td>5-6 km</td>
<td>0,07%</td>
<td>-</td>
</tr>
</tbody>
</table>

Stwierdzamy zatem, że jest mało prawdopodobne spotkanie się matki i trutni podczas lotów godowych, gdy ich miejsce zamieszkania dzieli dystans około 9 km. Dodajmy, że działa tutaj także dodatkowe zabezpieczenie ochronne osłabiające ewentualne skutki takiego zdarzenia: matka pszczoła kojarzy się więcej niż z jednym trutniem.

Gdy przyjmiemy minimalny obszar zamkniętego rejonu hodowli przez zakreslenie okręgu o promieniu 9-10 km, to zajmie on powierzchnię 254-314 km². Taka konfiguracja przestrzenna narzuca ograniczenia techniczne w reprodukowaniu populacji zachowawczej. Należy bowiem wystawiać matki do unasięgnięcia tylko w centralnej części rejonu, a na jego peryferiach trzeba zadbać o wychów odpowiednich trutni poprzez selekcję matek pszczoł. Selekcję traktujemy tutaj jako konieczny warunek uprawiania tej formy hodowli zachowawczej, chociaż narusza ona strukturę genetyczną populacji. Jej ostrość możemy temperować przez odpowiednią lokalizację zamkniętego rejonu i jego zasięg.
Ryc. 2. Zasięg i rozkład lotów trutni wokół pni ojcowskich; kilometr 0 - miejsce ustawienia pni ojcowskich; a-f - strefy zamkniętego rejonu. W prawym rogu rysunku: krzywa rozkładu dystansu lotów trutni od miejsca stacjonowania pni ojcowskich (kilometr 0) do odległości 6 km (granica maksymalnego zasięgu lotów trutni). Dla każdej strefy zamkniętego rejonu podano w procentach prawdopodobny udział zalatujących tam trutni z pni ojcowskich.

Fig. 2. Extent and pattern of drones’ flights around colony; kilometre 0 - the place where the colony were situated. From a to f - region of closed zones. In the right corner of the picture: the curve of distance pattern of drones’ flights from the place of colony (kilometres 0) to 6 kilometres (the border of maximal drones’ flight range). The probable percentage of flying drones from colony for each region of closed zone has been stated.

Lecz możliwości tutaj są ograniczone. Sieć pasiek na pszczelarskiej mapie kraju jest bowiem dość gęsta, a powiększanie obszaru rejonu przysparza trudności organizacyjnych niewspółmiernie do korzyści. Dodajemy, że o lokalizacji rejonów augustowskiego i kampinoskiego rozstrzygały siedliska naturalne pszczoły miejscowej, a nie walory terenowe pod względem napszczenia.

Pragnę wyjaśnić, że w konstrukcji zamkniętych rejonów hodowli rozróżniam dwa niezależne składniki:

1) urządzenie terytorialne, związane z dobrą lokalizacją przestrzenną, z uwzględnieniem pszczelarskiego czynnika społecznego,

2) populację pszczół reprodukowaną w izolacji genetycznej.

Wyraźny jest tutaj pogląd, że nie siedlisko chronionej populacji pszczół jest wyznacznikiem lokalizacji rejonu, ale naturalne walory terenowe. Chodzi tu o możliwości absolutnej kontroli napszczenia w sposób niedrogi, także w stosunku
do pasiek tam osiadłych, jeżeli występuje ten problem. Mając taką niszę, można urządzić zamknięty rejony hodowli i podjąć się reprodukcji dowolnej populacji pszczół.

EWOLUCJA HODOWLI ZACHOWAWCZEJ

Zamknięte rejony hodowli, augustowski i kamponoski, spełniły pozytyczną rolę w fazie ich tworzenia. Lecz rozpoczęte tam prace hodowlane zatrąciły zbiegiem czasu swój pierwotny charakter merytoryczny, a objęte ochroną pszczele rezerwy genetyczne nie zostały dotychczas wykorzystane w praktyce. Sprawa jest poważna, bo w grę wchodzą tutaj znaczne nakłady finansowe. Konieczna jest zatem rozsądną kalkulacja, na której będzie można oprzeć kluczowe decyzje. Widzimy następujące możliwości w wyborze:

1) rekonstrukcja rejonów i włączenie tej formy hodowli zachowawczej w system krajowy na zasadzie funkcjonującego jej składnika.

2) potraktowanie ich w sposób ekologiczny, rezerwatowy, to znaczy poza hodowlany.

3) zaniechanie sprawy.

Myślę, że ostatnia opcja jest bliska opinii większości hodowców, ale ich krenuje fakt, że zamknięte rejony utrwaliły się w świadomości pszczelarzy jako konieczny składnik krajowej działalności hodowlanej. Ale myślę także, że nie będzie to najlepszy wybór.

Natomiast opcja pierwsza zawiera chyba najbardziej racjonalne rozwiązanie z pszczelarskiego punktu widzenia. Mamy już dobre rezultaty z promowania innych form hodowli zachowawczej niż zamknięte rejony. Zaczęły się one z doświadczeniem na temat tak zwanej laboratoryjno-pasiecznej reprodukcji populacji, która na szeroką skalę zaowocowała w latach 80. wdrożeniem masowej hodowli pszczół rasy kaukaskiej. Realizację tego programu podjęła sieć pasiek na terenie kraju, których właściciele mogą skonsolidować się w funkcjonalny zespół, na przykład związek hodowców pszczół kaukaskiej. W tym konkretnym przypadku równorzędną rolę w reprodukcji odgrywa kontrolowane i naturalne unasianie matki. Ten wątek został podchwycony i wykorzystany także przez niektóre pasieki zarodowe w selekcji i reprodukcji masowej linii pszczół. W tym celu organizują one zamknięte mini rejon. Tego rodzaju rozwiązania pasują do naszych zamkniętych rejonów i mogą być z powodzeniem uprawiane.
KRYTERIA OCHRONY GENETYCZNEJ PSZCZÓŁ

Rozmaitość rozwiązań hodowli zachowawczej jest na pewno pożyteczna i wręcz pożądana, zwłaszcza gdy tworzą komplementarny układ i są przydatne praktyce. Lecz jest tutaj zawsze siłą napędową selekcja i ona to kształtuje strukturę genetyczną populacji zachowawczej w sposób uikierunkowany, zubożając z reguły jej pierwotną zmienną genetyczną. A to jest w sprzeczności z należycie pojmowaną ochroną genetyczną lokalnych populacji pszczół miodnej. Przeciwny pszczelarz-hodowca na ogół nie dostrzega tej subtelności. Troszczy się on o to, gdzie może nabyć dobry materiał pszczeli do selekcji i reprodukcji, a nie w jaki sposób zabezpieczać źródła tego materiału. Zresztą z jego punktu widzenia istnieją zawsze możliwości albo importu albo wyselekcjonowania wartościowej produkcyjnie pszczoly z każdej populacji, niezależnie od stopnia jednorodności jej struktury genetycznej i pochodzenia. Przy mrówczu twórczej pracy powodzenie jest raczej pewne, ale ten sposób na sukces nie neguje równie dobrych wyników selekcji prowadzonej w obrębie jednorodnych populacji, na przykład w systemie otwartym. Nie mamy tutaj odniesienia porównawczego, bo brakuje synchronizacji w czasie. Nie bawimy też się w roztrząsanie współzależności genetyczno-środowiskowych, które rzutują na zdolności produkcyjne rodzin pszczeliach. Lecz wiemy, że selekcjonując populacje pszczół na wąską grupę genów, możemy utracić bezpowrotnie inne geny jakościowo znaczące, wśród nich także te, co do których nie mamy jeszcze rozpoznania.

Potocznie przyjmujemy, że ochrona genetyczna populacji pszczół miodnej jest problemem hodowlanym. Tymczasem ma ona szerszy wymiar ogólnoekologiczny, jako cząstkowy składnik w dziedzińce ratowania w obrębie gatunku Apis mellifera jego wymieranych form. Lokalne populacje pszczól, którym grozi zagłada, kwalifikują się zatem do ochrony na zasadzie rezerwatów przyrody.

ZAKOŃCZENIE

Ten zbiór wiadomości i opinii opierano na wieloletnich obserwacjach i badaniach dotyczących hodowli pszczół. W wielu miejscach opracowania nawiązuję do nich bezpośrednio w sposób konkretny. Ten swoisty źródłowy wybór zawarto w spisie publikacji.
LITERATURA

Gromisz M. 1994. O stanie krajowej hodowli pszczoli i kierunkach jej rozwoju. ISK Skierniewice

The resources of aboriginal honeybee and its protection

SUMMARY

In 1956 the Bee Department of Institute of Pomology and Floriculture started to catalogue aborygenic bees to designate the resources of our honeybees and to protect them. The populations from Lubelska Upland, Podlasie and Mazury districts have been treated as the representative sets of hive of the aborygenic bee from Central Europe. The mathematical-morphological model has been made of this race of bee and it is expressed in formula: z= (X-x):s, x-the real value of a feature of a hive, z-the standardised value.
Among 389 tested hives in Poland only 35% fulfilled criteria of Central Europe race. Rest of them were crosses and they also showed often the decrease in production of honey. The conservative culture was started in aim to protect the clear genetic line. Closed apiary region were created in Augustowska Woodland (forest bee) and Kampinoska Woodland (bee of Central Europe). The closed area as the form of preservative culture included the habitat of the bees population which reproduced in its own genetic bank. The spatial isolation protected against the migration of outside genes. Closed areas of breeding fulfilled the positive role during the stage of their creating but afterwards these research haven’t been used in practise.

The genetic protection of *Apis mellifera* is an important reproductive and ecological problem. The local bee population which might be threatened should be protected in preserve.